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Abstract: We will demonstrate how calculations in toric geometry can be used to com-

pute quantum corrections to the relations in the chiral ring for certain gauge theories. We

focus on the gauge theory of the del Pezzo 2, and derive the chiral ring relations and quan-

tum deformations to the vacuum moduli space using Affleck-Dine-Seiberg superpotential

arguments. Then we calculate the versal deformation to the corresponding toric geometry

using a method due to Altmann, and show that the result is equivalent to the deformation

calculated using gauge theory. In an appendix we will apply this technique to a few other

examples. This is a new method for understanding the infrared dynamics of certain quiver

gauge theories.
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1. Introduction

An important problem that string theory purports to explain is the physics of singularities.

Singularities have been found to be both useful and natural to have in the compactification

manifold of string theory, and have been studied for a long time. One of the most important

questions we wish to ask is what happens when fractional branes are stuck at singularities.

In the case of the conifold, we have a good understanding of what happens, however most

singularities are more complicated and are not as well understood.

Recently much progress has been made in expanding the class of singularities for which

we can perform explicit calculations. Using new geometric techniques infinite classes of

theories have been constructed; first the Y p,q [1 – 3], then the Xp,q [4], and finally the

La,b,c [5 – 8]. These quiver gauge theories have moduli spaces which cover all cones over

four sided polytopes, a particular subset of 3 complex dimensional toric varieties. Both the

gauge theory and the explicit metric on the gravity side of the AdS/CFT correspondence
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are known for the Y p,q and La,b,c theories [1 – 3, 5, 7, 9, 10]. These examples have been used

to perform careful tests of the AdS/CFT correspondence, and have also contributed to our

understanding of the relationship between quiver gauge theories and other mathematical

representations like toric geometry and dimer models.

In a similar line of work to deriving these new theories, new techniques have been

developed for deriving conformal field theories and their properties directly from toric ge-

ometry using constructions like brane dimers [11, 12], Z-minimization [13, 14], or more

purely mathematical methods like exceptional collections [15, 16]. Most of these meth-

ods have a direct geometric interpretation and (in the toric case) are easily turned into

tractable computer algorithms. Other methods using M-theory compactifications and de-

construction techniques are also being explored to analyze these theories and their quantum

deformations [17, 18]. However quantum corrections and their relationship to the classical

toric geometry have not yet been fully explored using pure algebraic geometric techniques.

For a long time, the only explicit solution we had of a quantum deformed singularity

on both the gauge and gravity side was the conifold solution of Klebanov and Strassler [19 –

22]. However recent progress on Seiberg duality cascades and fractional branes [23 – 27]

have shown heuristically that we can expect at least two different types of infrared be-

havior at the end of the cascades; either supersymmetry is broken and the deformation

is non-Calabi-Yau, or the deformation is similar to that of the conifold, or something else

happens like the SU(3) structure solutions of [28]. What exactly happens to the geometry

when fractional branes corresponding to obstructed deformations are present is not well

understood, and the infrared smoothed supergravity solutions are not known. Even for

the non-obstructed deformations, counting techniques using Minkowski decompositions or

p − q web splittings only gives a general picture of what we expect to happen and does

not give us the mathematical tools to calculate the deformations exactly. In this paper

we will give a method due to Altmann [29], using which can calculate the deformations to

the geometry exactly from just the toric data, and we will show that this gives the correct

result by comparing the calculation to the deformations of the relations in the chiral ring

obtained from the gauge theory directly.

The previous work of [25] was inspired by a result in [29] that showed there were no

unobstructed complex structure deformations for the cone over the del Pezzo 1. Altmann’s

proof, however, is constructive, and we realized that it could be used to calculate defor-

mations which were not obstructed purely from the toric geometric data. Because the

embedding relations of the toric geometry are classically exactly the relations among the

chiral ring of the associated quiver gauge theory, it is natural to think that quantum de-

formations due to fractional branes which correspond to the non-obstructed deformations

would be described by these deformations of the geometry as well. In the case of the coni-

fold, where the deformation and relations are trivial, the correspondence is clear, but for

more complicated geometries that are not complete intersections the relationship remained

to be worked out exactly. In this paper I give the relationship between the deformations

of the vacuum moduli space and the complex structure deformations calculated using Alt-

mann’s method for a particular non-trivial example, the cone over the del Pezzo 2, and

find that they correspond exactly. This example is complicated enough that we expect our
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results to hold more generally.

The organization of the paper will be as follows: In section 2 we will introduce the

gauge theory corresponding to the cone over the del Pezzo 2, and derive its chiral ring

and the relations between the generators of the chiral ring using the F-term equations.

In section 3 we will find the ADS superpotential for the theory with N fractional branes

and 1 probe brane, and use the corresponding F-term equations to solve for the relations

of the deformed chiral ring. In section 4, using the toric description of the geometry, we

will derive two deformations, show that one is obstructed and one is free, and match the

deformed geometry to the deformed relations in the chiral ring found in section 3. Finally,

in section 5 we will conclude by remarking how this method generalizes to other theories

and commenting on some open problems for research. Two appendices are also included.

Appendix A contains a brief review of some of the toric geometry needed in this paper,

as well as a calculation of the number of relations for the arbitrary Y p,q. Appendix B

contains some further examples, including the deformed conifold as a simple illustration of

our methods.

2. Classical properties of the del Pezzo 2 theory

The primary example for this paper will be the N = 1 quiver gauge theory corresponding

to a cone over the second del Pezzo surface; i.e. the dP2. This theory is nice to work with

because it has both deformation branes and supersymmetry breaking branes in the sense

of [25, 26]. It is also simple enough where the properties of the chiral ring can be analyzed

directly on the gauge theory side. This theory has already been explored from a number

of perspectives. For example, see [30 – 33] and references therein for various work that has

been done. In this section, we will define the theory, calculate the generators of the chiral

ring, and find the relations among those generators that define the vacuum moduli space

of the quiver theory.

2.1 Chiral primaries

The gauge theory corresponding to the cone over the del Pezzo 2 is a quiver gauge theory

with five gauge groups, with quiver diagram

, (2.1)

and superpotential:

W =

( )
−

( )
−

( )
(2.2)

+

( )
+

( )
−

( )
.

We will use this graphical representation of the fields throughout this paper, where the

traces are left implicit, and the symmetries of the equations are more readily apparent.
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We have colored three of the bifundamental fields in blue, because the F-term equations

derived from the superpotential leave the number of blue fields invariant. Therefore the

number of blue fields in a loop provides a grading on the chiral primaries.

To find the vacuum manifold of this theory, we place a single probe brane in the system,

making the gauge group simply U(1)5, so that all the bifundamentals commute. Keeping

the grading in mind, we can construct all loops with 0, 1, 2, and 3 blue fields, and then use

the F-term equations to find a minimal independent set. For loops with no blue fields we

have,

( )
,

( )
,

( )
,

( )
.

(2.3)

But we also have the F-term equations for the field
( )

and
( )

:

( )
=

( )
,

( )
=

( )
(2.4)

so we only have two independent loops at this level. We call them

a1 ≡

( )
a2 ≡

( )
. (2.5)

For the next level, we can repeat the argument. There are 10 different loops with one blue

field, but the F-term equations show that only three of them are independent. We call

these three:

b1 ≡

( )
b2 ≡

( )
b3 ≡

( )
. (2.6)

With 2 blue fields, there are 4 different loops, but only 2 of them are independent:

c1 ≡

( )
c2 ≡

( )
. (2.7)

And finally with all three blue fields there is only one loop, and we call it

d ≡

( )
. (2.8)

The 8 combinations of fields defined in (2.5)–(2.8) are the chiral primaries. In other

words, the generators of the chiral ring. The manifold of their expectation values describes

the vacuum manifold for the N = 1 supersymmetric quiver theory. However this manifold

is not simply C
8, because these eight generators satisfy a number of relations between each

other.
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2.2 Chiral ring relations

These 8 chiral primaries are not independent; they satisfy a number of relations. As an

illustration we can show that b1b3 = b2
2:

( )
·

( )
=

( )
·

( )

=

( )
·

( )
(2.9)

where in the first equation we used the F-term equation for the field
( )

, and the

second equation used the F-term equations for the field
( )

and
( )

.

After doing many calculations like this, we find that there are 14 relations:

b2
2 = b1b3, b2

2 = a1c2, b2
2 = c1a2, c2

1 = b1d, c2
2 = b3d

b1a2 = b2a1, c1b2 = c2b1, b2a2 = b3a1, c1b3 = c2b2

b1b2 = c1a1, b2b3 = c2a2, c1c2 = b2d, c1b2 = a1d, c2b2 = a2d. (2.10)

These 8 complex variables and 14 relations are not a complete intersection in C
8, because

the dimension of the variety, 3, is greater than m−n, where m = 8 is the number of variables

and n = 14 is the number of equations. So therefore, in some sense, this representation of

the space is very tightly constrained. It defines a cone over the second del Pezzo surface,

or dP2. Because this corresponds to a toric geometry, the chiral primaries can be arranged

to make the relationships between them correspond to linear relations between vectors:

b3

c2 a2

d b2

c1 a1

b1

As is explained in appendix A, the relations correspond to irreducible parallelograms in

the above diagram, and it is straightforward to verify that those relations are exactly the

ones found from the F-term equations above, (2.10).

3. Quantum deformations of dP2

When all five gauge groups have the same rank, this theory is conformal. However we

want to study the behavior of the non-conformal theory with fractional branes, specifically

the IR behavior where we expect some of the gauge groups to confine. In this section we

will find the deformed vacuum moduli space in the IR by solving for the ADS deformed

superpotential when you place N deformation fractional branes on the quiver. Then we

will use that solution to analyze what happens to the chiral ring relations we derived above.
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3.1 Branes on dP2

We can analyze the various branes we can put on this quiver theory. Ordering the gauge

groups as
3

2 4

1 5

we have a bulk brane with weight (1, 1, 1, 1, 1), a fractional brane with weight (1, 2, 1, 0, 0),

and another fractional brane with weight (1, 0, 0, 0, 1). We expect to get two different

fractional branes because the toric polytope for dP2 has 5 sides (equivalently, the p− q web

has five legs), as will be explored in section 4. Both fractional branes are expected to trigger

a duality cascade [23]. However the first brane will end with supersymmetry breaking (the

so-called Supersymmetry Breaking by Obstructed Geometry, or SUSY BOG [25]), while

the second brane will trigger a complex structure deformation (the so-called deformation

brane [26]). First we review what happens in the case where we have N supersymmetry

breaking branes, and show that the deformation is incompatible with the F-term equations.

Placing N SUSY BOG branes leaves us with this quiver diagram:

SU(N)

SU(2N)

SU(N)

(3.1)

and simply the second term in the superpotential given in (2.2). We expect that these

gauge groups will flow to strong coupling in the infrared, but using the same arguments

that were used in [25], we can use the Konishi anomaly equations [34, 35]:

〈
−

1

32π2

∑

i,j

[
Wα,

[
W α,

∂f

∂Xj
i

]]〉
= 〈tr(f(X,WαW α)∂XW )〉 . (3.2)

where δX = f(X,WαW α) is the variation of the bifundamental X, and Wα is the su-

persymmetric gauge field strength. If we take the simplest variation, δX = X for the 4

remaining fields, we get

tr

〈 〉
= NS1 + NS3 = 2NS1 + NS2 = 2NS3 + NS2 (3.3)

0 = NS1 + NS3 (3.4)

as the equations for each field, where we have defined Sk = −trkWαW α/32π2. The only

solution to these equations is S1 = S2 = S3 = 0, which implies that something other than

a deformation of the solutions to the F-term equations happens, as discussed in detail

in [25 – 27].

We will focus for the rest of the paper on what happens when you have N deformation

branes, 1 probe brane, and no SUSY BOG causing branes.
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3.2 ADS superpotential

We wish to study the conifold-like deformations of the complex structure of the dP2 gauge

theory, so we now turn to the case where only probe branes and deformation branes are

present, where we expect the deformation is not obstructed, and we can fully analyze the

geometry by looking at the chiral ring relations.

If we add N deformation branes and 1 probe brane, the ranks of the gauge groups will

be (N + 1, 1, 1, 1, N + 1). Since the SU(N + 1) groups only have bifundamentals connected

to U(1) groups, we can argue that the behavior in the infrared for nodes 1 and 5 is exactly

like a normal SU(N +1) theory with 2 flavors, one for each bifundamental connected to the

node. Under the assumption that these gauge groups confine, we are told to rewrite the

superpotential in terms of combinations of fields which are gauge invariant with respect to

the confining gauge groups.

We call these four combinations:

m11 ≡

( )
, m12 ≡

( )

m21 ≡

( )
, m22 ≡

( )
(3.5)

and likewise for the confining gauge group on the right with the variables nab, and also

give the 3 extra singlet fields these labels:

l ≡

( )
, r ≡

( )
, b ≡

( )
. (3.6)

Now we can rewrite the superpotential in terms of these commuting fields:

W = lrb − m11l − n11r + m21n12 + m12n21 − m22n22b. (3.7)

In the infrared, the superpotential develops an ADS piece like

WADS = S1 log(det(m)) + S5 log(det(n)) (3.8)

where S1 and S5 are the gaugino condensates for the first and fifth gauge groups. Now

we can find the correct infrared moduli space by looking at the solutions to the F-term

equations, ∂(W +WADS)/∂X = 0, for X each of the 11 variables, mab, nab, l, r, and b. The

F-term equations for l, r, and b give that

m11 = rb, n11 = lb, m22n22 = lr (3.9)

The equations for the off diagonal m and n variables give

S1S5 = det(m) det(n), m12n21 = m21n12. (3.10)

And the equations for the diagonal m and n variables gives that

lm21 = m22n21, rn21 = n22m21, lm12 = m22n12, rn12 = n22m12. (3.11)
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Finally, we can solve for S1 and S5 given the above equations, giving

S ≡ S1 = S5 = lrb − m12n21. (3.12)

The chiral primaries in terms of our new fields are:

a1 = m21l, a2 = n21r

b1 = m22n11, b2 = blr, b3 = m11n22

c1 = m12n11, c2 = m11n12

d = m12n12b. (3.13)

3.3 Deformed chiral ring

Now that we know how the F-term equations are modified by the quantum effects, we want

to see what happens to the 14 relations among the chiral ring (2.10). First we look at the

relation db1 = c2
1. We use the solutions to the F-term equations to prove or disprove this

relation:

db1 = m12n12bm22n11

= m12m12n11n11

= c2
1, (3.14)

where we used (3.9) and (3.11).

As an example of a relation which is modified, we examine c1a2 = b2
2:

c1a2 = m12n11n21r

= (blr − S)blr

= b2(b2 − S), (3.15)

where we used (3.9) and (3.12). We proceed in this manner through the other 12 equations.

Summarizing the results, we find that the 14 relations among the chiral primaries are

deformed to:

b2
2 = b1b3, b2(b2 − S) = a1c2, b2(b2 − S) = c1a2, b1a2 = b2a1,

c1b2 = c2b1, b2a2 = b3a1, c1b3 = c2b2, b1(b2 − S) = c1a1,

(b2 − S)b3 = c2a2, c1c2 = b2d, c1(b2 − S) = a1d, c2(b2 − S) = a2d,

c2
1 = b1d, c2

2 = b3d. (3.16)

In the next section, we will derive this exact deformation by using the toric geometry

techniques of Altmann.

4. Deformations of dP2 from toric geometry

The moduli space of this quiver theory has an alternate description in terms of toric

geometry. In this section we will use this description to derive the deformed space (3.16)
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x

y

z
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Figure 1: (a) The lattice cone defining the cone over the del Pezzo 2, (b) The dual lattice cone to

the cone over the del Pezzo 2. The marked points are the extra generators needed to generate the

lattice cone.

using only the combinatoric data defining the toric geometry. We will first review the

construction of the original, undeformed moduli space, and then proceed to construct the

necessary data to find the versal deformation of the toric singularity, using the methods of

Altmann [29].

4.1 14 relations that define dP2

The toric variety of the cone over the del Pezzo 2 can be defined by five vectors:

v1 = (0, 0, 1), v2 = (1, 1, 1), v3 = (0, 2, 1), v4 = (−1, 2, 1), v5 = (−1, 1, 1) (4.1)

which define the cone in the lattice shown in figure 1(a). We can describe the geometry as

an intersection in a higher complex dimensional space by constructing the minimal set of

generators of the dual cone, i.e. the cone over the lattice defined by the inward pointing

normals to this cone (see appendix A for a brief review of the toric geometry techniques).

Figure 1b shows the dual cone; it is defined by the vectors:

ṽ1 = (−1, 1, 0), ṽ2 = (−1,−1, 2), ṽ3 = (0,−1, 2), ṽ4 = (1, 0, 1), ṽ5 = (1, 1, 0).

(4.2)

However, these five vectors by themselves do not generate the entire lattice cone. We must

add the three extra lattice vectors that lie within the base of the cone:

ṽ6 = (0, 1, 0), ṽ7 = (−1, 0, 1), ṽ8 = (0, 0, 1). (4.3)

The geometry can then be defined as an intersection in C
8, by associating to each of

these generating vectors a complex coordinate subject to constraints defined by the linear

relationships between the generating vectors. We call these 8 coordinates (suggestively)

a1, a2, b1, b2, b3, c1, c2, and d, where:

a1 ∼ ṽ3, a2 ∼ ṽ4, b1 ∼ ṽ2,

– 9 –
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b2 ∼ ṽ8, b3 ∼ ṽ5, c1 ∼ ṽ7,

c2 ∼ ṽ6, d ∼ ṽ1. (4.4)

Now a linear relationship between the ṽ’s defines a polynomial relationship between the

a, b, c, d embedding coordinates. For example, ṽ8 + ṽ8 = ṽ2 + ṽ5 means that b2
2 = b1b3.

A minimal set of these relations can be found by counting all irreducible (in the sense

described in appendix A) parallelograms in the face of the dual cone, including degenerate

ones that reduce to a line, as in the example b2
2 = b1b3. It is straightforward to count that

there are 14 such parallelograms. They give rise exactly to the 14 relations in the chiral

ring for the dP2 quiver theory we analyzed in section 2, as of course it must (otherwise we

choose the wrong quiver and/or superpotential for the original theory):

b2
2 = b1b3, b2

2 = a1c2, b2
2 = c1a2, c2

1 = b1d, c2
2 = b3d (4.5)

b1a2 = b2a1, c1b2 = c2b1, b2a2 = b3a1, c1b3 = c2b2

b1b2 = c1a1, b2b3 = c2a2, c1c2 = b2d, c1b2 = a1d, c2b2 = a2d

4.2 Altmann’s construction of the space of versal deformations

A mathematical problem we might want to solve can be stated this way: Given an inter-

section (not necessarily complete) of hypersurfaces inside of C
n, how can we modify the

equations and maintain both the dimension and the degree of the algebraic variety1? Two

examples are explored very thoroughly in this paper. The first example is the conifold,

given by the equation uv = wz imbedded in C
4. In this case the answer to our question

is simple; there is only one thing you can do, namely add a constant uv = wz + ε. The

second example is the cone over the del Pezzo 2, given by the 14 relations in (2.10). Unlike

the conifold, simply adding an ε to one of the relations fails, reducing the solution set to

dimension 0, which clearly will not correspond to a physical quantum deformation of the

space.

Altmann [29] gives a method of finding all such deformations for the specific case when

the intersection is a toric Gorenstein singularity. He proves that

Theorem. The space of deformations of the complex structure of a toric Gorenstein sin-

gularity can be found by first lifting the defining relations to the tautological cone, and then

restricting to the ideal of the base of the cone over the Minkowski summands.

In the rest of this section we will define those various cones, and explain how one can

apply this in practice. We will not go into the details of the proof of this statement; the

full proof can be found in [29]. The content of the theorem can be summarized like this:

By lifting the defining relations to a higher dimensional space in a certain way, we capture

the most generic possible deformation of the relations. However the extra coordinates in

this higher dimensional space are not independent. They also satisfy relations determined

by the original geometry. Therefore we must also find these relations and restrict to them.

1The appropriate mathematical definition here is flatness, or the consistency of all the Hilbert polyno-

mials along the family of varieties. The dimensionality of the manifold is only one possible invariant.
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b)a)

Figure 2: (a) Splitting the polytope into two Minkowski summands (b) Separating the p-q web

The process consists of two steps: First, lift the relations to the higher dimensional space.

Second, restrict these new dimensions due to the relations between the new coordinates.

First we define the cone over the Minkowski summands, which I will simply refer to

as the Minkowski cone. This cone defines the extra dimensions we will add to the original

geometry. Let Q be the original 2 dimensional lattice polytope and let σ(Q) be the lattice

cone with that polytope as its base, as set up in appendix A. Choose one vertex of Q and

place it at (0, 0). Now we can describe Q as a sequence of edges, di, for i = 1 . . . N , where

N is the number of sides of Q. For example, for the conifold:

d = {(1, 0), (0, 1), (−1, 0), (0,−1)} (4.6)

where we have placed the lower left corner at the origin. This gives us a translationally

invariant way of describing the polytope. For the del Pezzo 2, as shown here:

(0, 0)

(4.7)

we can define it by a series of vectors along its face:

d = {(1, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}. (4.8)

The Minkowski cone, C(Q), is then defined as

C(Q) ≡ V ∩ R
N
≥0 with V ≡ {t1, . . . , tN | tid

i = 0}. (4.9)

For the conifold, we can see that C(Q) = R2
≥0. Every point in this rational cone defines a

Minkowski summand of the original polytope. Specifically, each point t ∈ C(Q) defines a

polytope Qt defined by the edges tid
i (no sum). For the case of the dP2, we can visualize

this in terms of separating the original polytope into two sub-polytopes, or in terms of p-q

web splitting (see figure 2).

The base of the Minkowski cone defines an ideal, given by the vector polynomials

N∑

i=1

tki d
i (4.10)
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for each k ≥ 1. However, for k > w, where w is the smallest integer such that the polytope

Q can be contained in 2 linearly independent strips of width w, we can drop those equations

as they are generated by the ones of lesser degree. This ideal is the restriction on the extra

dimensions we are going to add to the original geometry. For our conifold example the

width is simply 1 since it’s a unit square. Therefore the ideal is generated by two linear

polynomials:

t1 − t3, t2 − t4. (4.11)

For the dP2 the width is 2 since there is only one strip of width one which the polytope

fits in. Therefore we need to keep the quadratic equations, and the ideal is generated by

t1 − t2 − t3 + t5 = 0

t21 − t22 − t23 + t25 = 0

t1 + t2 − t4 − t5 = 0

t21 + t22 − t24 − t25 = 0. (4.12)

We can parameterize the solutions to the linear constraints with three variables t, s1, s2,

such that t1 = t, t2 = t − s1, t3 = t − s2, t4 = t + s2, and t5 = t − s1 − s2. Then the

quadratic constraints become

2s1s2 = 0

s2
2 = 0 (4.13)

forcing s2 = 0. So there is only one free parameter, s1, which is the deformation caused

by the deformation fractional brane. We interpret this parameter as the gluino condensate

field S on the field theory side. We will see that this interpretation exactly matches with

the results calculated in section 3.

Now that we have a way of describing how to split up the polytope into Minkowski

summands, we would like to combine that information with the original cone. This com-

bined cone is called the “tautological” cone, and we denote it as C̃(Q). The tautological

cone is the space combining the original geometry with the extra dimensions correspond-

ing to possible deformations. Recall that the original cone over the polytope is σ(Q) ⊆ R
3

and that C(Q) ⊆ V ∩ R
N
≥0. We want to form a cone which combines these two so that

C̃(Q) ⊆ R
3 × V . The challenge is to find some consistent way of lifting from the original

cone σ(Q) to the tautological cone C̃(Q).

Since we have already placed one vertex of Q at (0, 0), we can define every vertex

a ∈ Q in terms of a path λi such that a = λid
i. Clearly, λi ∈ Z

N for lattice polytopes. The

choice of λ is not unique, however it can be shown that different choices of λ end up giving

the same result [29]. Just as we defined a point in the polytope Q, we can define a point

in the Minkowski summand Qt as at = tiλid
i. Now we see how to define the tautological

cone:

C̃(Q) ≡ {(at, t) | t ∈ C(Q), at ∈ Qt}. (4.14)
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To take this lifting and dualize it (i.e. apply it to the defining relations directly), we take

the generator corresponding to (0, 0, 1)2 and replace it by the ti’s according to some power

weights. For each generator ṽi except for (0, 0, 1), we split it up into a 2-vector and a scalar:

ṽi = (ci, η0(ci)). Then we find a point a(ci) ∈ Q such that −ci · a(ci) = η0(ci). Then we

find the path representation for the a(ci), i.e. find λci

j such that a(ci) = λjd
j . Finally, we

can define the weights for lifting to the tautological cone:

η(ci) ≡ (−λci

1 (d1 · ci), . . . ,−λci

N (dN · ci)) ∈ Z
N . (4.15)

Now if we call zi the complex embedding coordinate correspoding to the generator ṽi, and

call the coordinate corresponding to the (0, 0, 1) generator t, we replace the t by the N

Minkowski cone variables t1, t2, . . . , tN in the defining embedding relations according to the

power weights given by the η(ci) defined above. In general, a relation of the form

∏

i

tazpi

i =
∏

i

zqi

i (4.16)

becomes: ∏

i

t
(

P

j pjη(cj)−qjη(cj))
i

i zpi

i =
∏

i

zqi

i . (4.17)

Note that due to this construction, it can be shown that a =
∑

i

(∑
j pjη(cj) − qjη(cj)

)
i
.

We now follow this procedure for the dP2. We have already found the generators of

the dual cone in section 4.1:

ṽ1 = (−1, 1, 0), ṽ2 = (−1,−1, 2), ṽ3 = (0,−1, 2), ṽ4 = (1, 0, 1), ṽ5 = (1, 1, 0)

ṽ6 = (0, 1, 0), ṽ7 = (−1, 0, 1), ṽ8 = (0, 0, 1).

(4.18)

Splitting them into (ci, η0(c
i)), and then finding points on the polytope a(ci) such that

−ci · a(ci) = η0(ci), we get:

c1 = (−1, 1), a(c1) = (0, 0), η0(c
1) = 0

c2 = (−1,−1), a(c3) = (1, 1), η0(c
2) = 2

c3 = (0,−1), a(c4) = (−1, 2), η0(c
3) = 2

c4 = (1, 0), a(c5) = (−1, 2), η0(c
4) = 1

c5 = (1, 1), a(c6) = (0, 0), η0(c
5) = 0

c6 = (0, 1), a(c7) = (0, 0), η0(c
6) = 0

c7 = (−1, 0), a(c2) = (1, 1), η0(c
7) = 1. (4.19)

If we define λi as vector paths to the points a(ci), i.e.
∑

λi
jd

j = a(ci), we can choose

λ1 = λ5 = λ6 = (0, 0, 0, 0, 0)

2This generator will always be present for any polytope with at least one interior lattice point. See

appendix B.1 for how to modify the algorithm in the special case when it is not.
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λ2 = λ7 = (1, 0, 0, 0, 0)

λ3 = λ4 = (0, 1, 0,−1, 0). (4.20)

Then we can define the weight vectors η(ci), as (−λci

1 (d1 · ci), . . . ,−λci

5 (d5 · ci)), giving:

η(c1) = η(c5) = η(c6) = (0, 0, 0, 0, 0)

η(c2) = (2, 0, 0, 0, 0)

η(c3) = (1, 1, 0, 0, 0)

η(c4) = (0, 1, 0, 0, 0)

η(c7) = (1, 0, 0, 0, 0). (4.21)

These define how to lift the variables to a 7 + 5 = 12 dimensional dual tautological cone.

If we relabel to match our previous notation, c1 → d, c2 → b1, c3 → a1, c4 → a2, c5 →

b3, c6 → c2, c7 → c1, we can take our 14 defining equations and lift them to the higher

space by replacing b2, the generator which corresponds to (0, 0, 1), with five variables,

t1, . . . , t5 according to the power weight vectors η. For example, the equation

b2
2 = b1b3 (4.22)

becomes:

t21 = b1b3, (4.23)

since η(b1) + η(b3) = (2, 0, 0, 0, 0). Proceeding through the rest of the equations, we find

that they become:

t21 = b1b3, t1t2 = a1c2, t1t2 = c1a2, b1a2 = t1a1,

c1t1 = c2b1, t1a2 = b3a1, c1b3 = c2t1, b1t2 = c1a1,

t2b3 = c2a2, c1c2 = t1d, c1t2 = a1d, c2t2 = a2d,

c2
1 = b1d, c2

2 = b3d. (4.24)

According to the theorem, the final step is to restrict these equations to the ideal over

the base of the Minkowski cone. So we simply parameterize the solutions to the ideal, and

plug those parameters into the lifted equations. If we only looked at the 2 linear relations,

we see that the t parameter is replaced by N − 2 coordinates, with a net gain of N − 3

degrees of freedom. Therefore we expect there to be N − 3 different fractional branes for

a quiver theory that corresponds to an N sided polytope. However further restrictions on

deformation can arise at the quadratic and higher order ideal polynomials. In general, it

seems to be easiest to first parameterize the solutions to the linear equations, and then use

the higher order equations in order to derive further restrictions on the parameters.

For the dP2 the five variables are restricted to lie on the base of the cone over the

Minkowski summands on the ideal generated by the solutions to (4.12). Substituting these

definitions back into the equations, we arrive at the equations defining the deformed moduli

space (and relabeling t → b2 and s1 → S)

b2
2 = b1b3, b2(b2 − S) = a1c2, b2(b2 − S) = c1a2, b1a2 = b2a1,
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c1b2 = c2b1, b2a2 = b3a1, c1b3 = c2b2, b1(b2 − S) = c1a1,

(b2 − S)b3 = c2a2, c1c2 = b2d, c1(b2 − S) = a1d, c2(b2 − S) = a2d,

c2
1 = b1d, c2

2 = b3d. (4.25)

Comparing these equations with (3.16), we find exact agreement.

This exact agreement is actually quite surprising. Although we expected the geometric

method to find the same deformed geometry, we did not expect to find it in the same

coordinates. Indeed, had we chosen a different parameterization for the solution to the

ideal (4.12), we would have found a different set of deformed equations, equivalent through

some change of variables in the embedding coordinates. The surprising fact that the

“simplest” choice of parameterization for both the gauge theory and the geometric method

coincide is most likely due to the fact that in this example there is only one non-obstructed

deformation. In theories such as the del Pezzo 3, with more than one deformation, the

deformations may mix with each other, and we expect that one would have to work harder

to show the equivalence between the deformed geometry and the deformed chiral ring.

5. Conclusions

In this paper we have calculated the chiral primaries and the relations between them in

two settings, through the gauge theory using ADS superpotential techniques, and through

the geometry side using toric techniques. The latter has the advantage of being more

easily programmable on a computer, and only uses the combinatoric structure of the toric

singularity. While up until recently, these geometric methods were only useful for deriving

classical moduli spaces, we have shown in a specific calculation that they can also be used

to analyze the quantum behavior of moduli spaces, opening the possibility of gaining a

better understanding of the quantum deformations of toric singularities of all types.

Much work remains to be done, however. As the del Pezzo 2 corresponds to the X2,1

space [4], whether this analysis generalizes to the more complicated geometries of the Xp,q

spaces is an obvious thing to explore. An interesting question is whether you can use

these solutions to help construct the corresponding deformed supergravity solution in the

spirit of the deformed conifold, as the connection between these geometric techniques and

supergravity is still not well understood and exploring it may shed some light on the more

general AdS/CFT correspondence. An important open problem is to understand what

happens if we add deformation obstructed branes, breaking supersymmetry through the

SUSY BOG mechanism, and if this formalism might be generalized to give us some way of

describing what happens to the geometry in those situations. If we have a better quantita-

tive understanding of how these geometries deform, we may be able to approach the issues

involved in compactifying them, which opens up a number of possible phenomenological

uses for these theories. This is just one more of a set of powerful new tools with which we

can calculate explicit geometries of non-trivial gauge theories.
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A. Some techniques from toric geometry

In this appendix we will review how to analyze the toric description of these types of

geometries, and how to go from a description of the singularity as a cone over a lattice

polytope to the embedding as an intersection in some higher complex dimensional space.

Theorem 4.1 applies to a class of varieties that are cones over toric Gorenstein singu-

larities. This means that they can be represented by lattice cones with polytopes as their

base, where no lattice points lie along the edges of the base. The case of most interest to

physicists is the case of a polygon in a 2 dimensional lattice, because the cone over that

geometry is a 3 complex dimensional space. 3 dimensional polytopes might also be use-

ful for F-theory compactifications; however for simplicity I will specialize to 2 dimensions

for this paper. The interested reader can refer to [29] for details on how to modify these

calculations for arbitrary dimension.

Given a lattice polygon, a basic question we would like to answer is “How do we take

this description and recover the description of the geometry in terms of an intersection (not

necessarily complete) of hypersurfaces?” To do this is a straightforward three step process:

1. Form the lattice cone with the polytope as its base.

2. Find the minimal set of generators of the dual lattice cone.

3. Associate to each generator a complex variable. Then the linear relations among

the generators define the multiplicative relations among the complex variables which

define your intersection.

As a trivial example we can examine the conifold, whose polytope is simply a square. The

cone over the polytope is shown in figure 3(a), defined by these vectors:

v1 = (0, 0, 1), v2 = (1, 0, 1), v3 = (1, 1, 1), v4 = (0, 1, 1). (A.1)

To find the dual cone, we find the inward pointing normal vectors to the sides of the cone,

and use those vectors to define the dual lattice cone. The dual cone for the conifold is

shown in figure 3(b), defined by these 4 vectors:

ṽ1 = (0, 1, 0), ṽ2 = (−1, 0, 1), ṽ3 = (0,−1, 1), ṽ4 = (1, 0, 0). (A.2)

To each of these vectors, we associate a complex coordinate, giving us C
4. These variables

are related multiplicatively based on the linear relationships of the vectors. In this case,

since ṽ1 + ṽ3 = ṽ2 + ṽ4, then uv = wz, where u is associated with ṽ1, v associated with ṽ3

etc. The geometry is defined as the locus of the set of relations among the variables, which

in this case is a simple hypersurface since there is only one relation.

In general, steps two and three in this process can be quite difficult. To illustrate this,

we can go ahead and look at the general Y p,q toric diagram, and attempt to calculate the

embedding and the number of relations among the variables exactly.
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x
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z
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Figure 3: (a) The toric cone defining the conifold, and the corresponding polytope (simply a unit

square) (b) The dual cone for the conifold

a

b

c

Figure 4: Sketch of the locations of the generators of the dual cone for Y 6,1, note that the b

generators are beneath the plane corresponding to the lines of a and c generators.

A.1 Counting relations for the Y p,q

In appendix B.1 of [25], the dual cone and generators for the arbitrary Y p,q were calculated.

Restating those results, we found that the dual cone was defined by 4 vectors:

ẽ1 = (0, 0,−1), ẽ2 = (−p, p,−p + 1), ẽ3 = (−p,−q, q + 1), ẽ4 = (0,−p + q, p − q − 1).

(A.3)

We found that there were 3 parallel lines of generators. There were p−q+1 generators of

type a along a line from ẽ1 to ẽ4, 3 generators of type b lying from (−1, 1,−1) to (−1,−1, 1),

and p + q + 1 generators of type c lying along a line from ẽ2 to ẽ3. This is illustrated for

Y 6,1 in figure 4. Therefore the geometry can be described as an intersection in C
(2p+5). To

find the specific relations among the 2p + 5 coordinates, however, requires finding all the

linear relationships among the generators.
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Restricting ourselves to quadratic relations first, we see that every quadratic relation

between variables corresponds to some set of four generators (a, b, c, d) which define the

corners of a parallelogram, since that guarantees a+ c = b+ d. Also note that if the paral-

lelogram is made up of two other parallelograms, the relation is implied by the constituent

relations, as illustrated here:

a2

a1 b1

b2

b3
a3

=
a2

a1 b1

b2

b3a3

+
a2

a1 b1

b2

b3
a3

, (A.4)

This diagram shows that the relation a1b3 = a3b1 is implied by the two relations a1b3 = a2b2

and a3b1 = a2b2. Because of this we only have to consider parallelograms where none of

the edges intersect a generator. We refer to these as “irreducible” parallelograms.

Now we can proceed to count the total number of quadratic relations: There are 2

classes of relations, those that only involve one type of generator (only of type a, b, or c),

and those that involve relations between two different types. We will concentrate on the

mixed relations first. Because the lines are parallel, and the generators are equally spaced,

this is a simple counting problem. We need to count the number of ways of choosing two

adjacent points in one line, and two adjacent points on the other. e.g.

=⇒ (4 − 1)(3 − 1) = 6. (A.5)

Therefore the number of relations between two lines of generators, one of length m and

one of length n, is simply (m − 1)(n − 1). There are 3 such possible pairings in our case:

type # of relations

a/b 2(p − q)

b/c 2(p + q)

a/c p2 − q2

. (A.6)

The other possibility is relations among the generators of the same type. This again

reduces to a simple counting problem. All the relations are irreducible (in the above sense),

degenerate parallelograms in the line, with vertices at either 3 adjacent points (the center

point counted twice), or 4 adjacent points. Therefore, as long as m ≥ 3, the number of self

relations among a line of m lattice points is simply equal to (m − 2) + (m − 3) = 2m − 5.

E.g

=⇒ 2 · 5 − 5 = 5. (A.7)
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For our Y p,q case there are 3 such lines. One with m = p + q + 1, one with m = p − q + 1,

and one with m = 3, giving:

type # of relations

a/a 2p − 2q − 3

b/b 1

c/c 2p + 2q − 3

. (A.8)

So the total number of quadratic relations for the Y p,q is

(2(p − q) + 2(p + q) + p2 − q2) + (2p − 2q − 3 + 1 + 2p + 2q − 3) =

p2 + 8p − q2 − 5. (A.9)

This is the total number of quadratic relations (when p ≥ 3). However, there are also

higher order relations (or extra quadratic relations when p = 2).

To find the higher order relations, first we note that among a set of generators that

lie in a single plane, all relations are quadratic (or reduce to quadratic ones), so we only

need to consider relations among all three generator types, a, b, and c. First we label the

various generators explicitly:

a1 = (0, 0,−1) . . . ap−q+1 = (0,−p + q, p − q − 1)

b1 = (−1, 1,−1) . . . b3 = (−1,−1, 1)

c1 = (−p,−q, q + 1) . . . cp+q+1 = (−p, p,−p + 1). (A.10)

By looking at the x coordinates of the a, b, and c generators given in (A.10), we see imme-

diately that the only relations possible relate order p b type generators to a combination

of one a and one c type generator. Also, because of the quadratic relation b1b3 = b2
2, we

can limit ourselves to looking at relations involving b1 or b3, but not both. Inspecting the

generators shows that all relations are of the form

bp−m
1 bm

2 = a1+ncp+q+1−l

for 0 ≤ m ≤ p, n + l = m, 0 ≤ n ≤ p − q, 0 ≤ l ≤ p + q (A.11)

and

bp−m
3 bm

2 = ap−q+1−nc1+l

for 0 ≤ m ≤ p − 1, n + l = m, 0 ≤ n ≤ p − q, 0 ≤ l ≤ p + q, (A.12)

Counting the number of these equations is a simple exercise. We find that

p−q∑

m=0

(m + 1) + q(p − q + 1) +

p−q∑

m=0

(m + 1) + (q − 1)(p − q + 1) = 1 + 2p + p2 − q2. (A.13)

However, each mixed quadratic relation between a and c makes one of these equations

redundant, and therefore we must subtract the p2 − q2 number of a/c mixed relations,
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giving us a total of 1 + 2p order p relations. Adding this to the number of quadratic

relations gives us the total number of relations3 :

p2 + 10p − q2 − 4. (A.14)

One thing to note about this formula is its dependence on p. The number of chiral

primaries which equals the dimension of the embedding space of the vacuum manifold is

simply equal to the number of generators, or 2p+5. However the number of relations grows

as p2 − q2. Therefore, in some sense, as p2 − q2 gets large, the intersection becomes more

and more constrained, with more and more relations among comparatively fewer number

of variables.

B. Additional examples

In this appendix, we will look at two more examples; one trivial and one non-trivial. We

will first derive the deformed conifold using the techniques of Altmann, as a further check of

their correctness. Then we will derive the deformation to the Y 3,0, which should correspond

to a Z
3 orbifold of the conifold. This example was already studied in [33], however using

these new techniques we can find the entire embedding space explicitly.

B.1 Deformed conifold

We already found the generators of the dual cone for the conifold in appendix A:

ṽ1 = (0, 1, 0), ṽ2 = (−1, 0, 1), ṽ3 = (0,−1, 1), ṽ4 = (1, 0, 0). (B.1)

Now to describe deformations of this toric variety, we first need to add an extra generator

to the cone, corresponding to the vector ṽ5 = (0, 0, 1). If we associate a new variable t to

this vector, we see that we now get two relations, uv = t and wz = t. This is a trick which

is needed in this special case where (0, 0, 1) isn’t actually a generator of the dual cone.

However, exactly due to the fact that this generator wasn’t needed to generate the entire

lattice cone, these two equations reduce immediately to the one, original hypersurface

equation. This rewriting enables us to run our algorithm to construct the tautological

cone, thus embedding the toric variety in a higher space. Then we can eliminate t again

to determine the final degrees of freedom for the deformations.

We represent the polytope of the conifold by a sequence of edges:

d1 = (1, 0), d2 = (0, 1), d3 = (−1, 0), d4 = (0,−1). (B.2)

Using the process outlined in section 4, we associate a point on the original polytope to each

of the generators of the dual cone. We choose (0, 0) for ṽ1 and ṽ4, (0, 1) for ṽ3 and (1, 0)

for ṽ2 as the points on the polytope, a. Then we construct paths to each of the four points

3Note that this formula is incorrect for Y 1,0 (because there are no generators of type b in the conifold),

and off by 1 for Y p,p−1, or 3 for Y p,p (because we assumed that p − q + 1 ≥ 3.)
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on the toric polytope, λ1 = λ4 = (0, 0, 0, 0), λ2 = (1, 0, 0, 0), and λ3 = (0, 1, 0, 0). Then

finally we construct the weights η which end up being the same as the λ’s. Summarizing:

generator a λ η

ṽ1 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

ṽ2 (1, 0) (1, 0, 0, 0) (1, 0, 0, 0)

ṽ3 (0, 1) (0, 1, 0, 0) (0, 1, 0, 0)

ṽ4 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

. (B.3)

Lifting the two relations to the tautological cone gives:

uv = t1, wz = t2 (B.4)

However as we found in appendix A, we have two contraints, t1 − t3 = 0 and t2 − t4 = 0

(the quadratic contraints are redundant), so we can parameterize the solutions by t1 = t

and t2 = t − s. Then

uv = t, wz = t − s. (B.5)

Eliminating the extra generator t, we simply get uv = wz+s, the deformed conifold. There

are many simpler ways of deriving this result, but this method generalizes to varieties which

are not complete intersections, while the other, simpler methods rely on the variety being

a complete intersection.

B.2 Y 3,0, the deformed, Z
3 orbifolded conifold

For a slightly more complex example, we can look at the Y 3,0, which we expect to have

an unobstructed deformation because it corresponds to a Z
3 orbifold of the conifold. This

is defined as the polytope with vertices at (0, 0), (1, 0), (3, 3), and (2, 3). From our work

in appendix A.1, we know that there are 2p + 5 = 11 generators of the dual cone, and

p2 + 10p − q2 − 4 = 35 relations among them. We can list them all explicitly. First, there

are 7 relations that involve only one of the a or c type generators:

a1a3 = a2
2, a2a4 = a2

3, a1a4 = a2a3, (a ↔ c)

b1b3 = b2
2. (B.6)

Then there are 12 relations involving only a and b, or b and c type generators:

a1b2 = a2b1, a2b2 = a3b1, a3b2 = a4b1,

a1b3 = a2b2, a2b3 = a3b2, a3b3 = a4b2, (a ↔ c). (B.7)

And finally there are 16 cubic relations

b3
1 = a1c4,

b2
1b2 = a2c4 = a1c3,

b1b
2
2 = a1c2 = a2c3 = a3c4,

b3
2 = a1c1 = a2c2 = a3c3 = a4c4,
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b2
2b3 = a2c1 = a3c2 = a4c3,

b2b
2
3 = a4c2 = a3c1,

b3
3 = a4c1. (B.8)

This gives all the p2 + 10p − q2 − 4 = 35 relations we expect. Running the algorithm from

section 4, we get this data:

generator η0 a() λ η

a1 0 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

a2 0 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

a3 0 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

a4 0 (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

b1 1 (2, 3) (0, 1, 0, 0) (0, 1, 0, 0)

b3 1 (1, 0) (1, 0, 0, 0) (1, 0, 0, 0)

c1 3 (3, 3) (1, 1, 0, 0) (3, 0, 0, 0)

c2 3 (3, 3) (1, 1, 0, 0) (2, 1, 0, 0)

c3 3 (3, 3) (1, 1, 0, 0) (1, 2, 0, 0)

c4 3 (3, 3) (1, 1, 0, 0) (0, 3, 0, 0)

. (B.9)

Then, applying the η weights to lift the relations to the tautological cone:

a1t2 = a2b1, a2t2 = a3b1, a3t2 = a4b1,

a1b3 = a2t1, a2b3 = a3t1, a3b3 = a4t1 (B.10)

is what happens to the a/b relations.

c1t
2
2 = c2b1t1, c2t

2
2 = c3b1t1, c3t

2
2 = c4b1t1,

c1b3t2 = c2t
2
1, c2b3t2 = c3t

2
1, c3b3t2 = c4t

2
1 (B.11)

is how the b/c relations are lifted. Note that they are now cubic. The a/a and c/c relations

are invariant, and the only b/b relation is modified to

a1a3 = a2
2, a2a4 = a2

3, a1a4 = a2a3, (a ↔ c)

b1b3 = t1t2. (B.12)

And the cubic relations split up like this:

b3
1 = a1c4

b2
1t2 = a2c4, b2

1t1 = a1c3

b1t
2
1 = a1c2, b1t1t2 = a2c3, b1t

2
2 = a3c4

t31 = a1c1, t21t2 = a2c2, t1t
2
2 = a3c3, t32 = a4c4

t21b3 = a2c1, t1t2b3 = a3c2, t22b3 = a4c3

t2b
2
3 = a4c2, t1b

2
3 = a3c1

b3
3 = a4c1. (B.13)

– 22 –



J
H
E
P
0
3
(
2
0
0
6
)
0
5
5

Analyzing the ideal simply gives that t1 and t2 are free parameters, identical to the conifold

case. Therefore we relabel t1 → b2, and t2 → (b2 − S), giving us our deformed, orbifolded

conifold:

a1(b2 − S) = a2b1, a2(b2 − S) = a3b1, a3(b2 − S) = a4b1,

a1b3 = a2b2, a2b3 = a3b2, a3b3 = a4b2

c1(b2 − S)2 = c2b1b2, c2(b2 − S)2 = c3b1b2, c3(b2 − S)2 = c4b1b2,

c1b3(b2 − S) = c2b
2
2, c2b3(b2 − S) = c3b

2
2, c3b3(b2 − S) = c4b

2
2

a1a3 = a2
2, a2a4 = a2

3, a1a4 = a2a3, (a ↔ c)

b1b3 = b2(b2 − S)

b3
1 = a1c4

b2
1(b2 − S) = a2c4, b2

1b2 = a1c3

b1b
2
2 = a1c2, b1b2(b2 − S) = a2c3, b1(b2 − S)2 = a3c4

b3
2 = a1c1, b2

2(b2 − S) = a2c2, b2(b2 − S)2 = a3c3, (b2 − S)3 = a4c4

b2
2b3 = a2c1, b2(b2 − S)b3 = a3c2, (b2 − S)2b3 = a4c3

(b2 − S)b2
3 = a4c2, bsb

2
3 = a3c1

b3
3 = a4c1. (B.14)

These 35 equations in 11 variables and one parameter S define the geometry of the de-

formed, Z
3 orbifolded conifold. The generalization to arbitrary Y p,0, though somewhat

notationally cumbersome, is straightforward. This result can be compared with the previ-

ous work done in [33].
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[25] D. Berenstein, C.P. Herzog, P. Ouyang and S. Pinansky, Supersymmetry breaking from a

Calabi-Yau singularity, JHEP 09 (2005) 084 [hep-th/0505029].

[26] S. Franco, A. Hanany, F. Saad and A.M. Uranga, Fractional branes and dynamical

supersymmetry breaking, JHEP 01 (2006) 011 [hep-th/0505040].

[27] M. Bertolini, F. Bigazzi and A.L. Cotrone, Supersymmetry breaking at the end of a cascade of

Seiberg dualities, Phys. Rev. D 72 (2005) 061902 [hep-th/0505055].

– 24 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C208
http://xxx.lanl.gov/abs/hep-th/0505027
http://jhep.sissa.it/stdsearch?paper=12%282004%29024
http://xxx.lanl.gov/abs/hep-th/0411249
http://xxx.lanl.gov/abs/hep-th/0505206
http://jhep.sissa.it/stdsearch?paper=01%282006%29128
http://xxx.lanl.gov/abs/hep-th/0505211
http://jhep.sissa.it/stdsearch?paper=01%282006%29096
http://xxx.lanl.gov/abs/hep-th/0504110
http://xxx.lanl.gov/abs/hep-th/0503183
http://jhep.sissa.it/stdsearch?paper=11%282005%29019
http://xxx.lanl.gov/abs/hep-th/0506232
http://jhep.sissa.it/stdsearch?paper=02%282006%29061
http://xxx.lanl.gov/abs/hep-th/0507175
http://xxx.lanl.gov/abs/hep-th/0502105
http://jhep.sissa.it/stdsearch?paper=06%282004%29060
http://xxx.lanl.gov/abs/hep-th/0406122
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://xxx.lanl.gov/abs/hep-th/0007191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C199
http://xxx.lanl.gov/abs/hep-th/9807080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://xxx.lanl.gov/abs/hep-th/9810201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C337
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C337
http://xxx.lanl.gov/abs/hep-th/9805131
http://jhep.sissa.it/stdsearch?paper=02%282005%29009
http://xxx.lanl.gov/abs/hep-th/0412193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C046006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C046006
http://xxx.lanl.gov/abs/hep-th/0402120
http://xxx.lanl.gov/abs/hep-th/0412207
http://jhep.sissa.it/stdsearch?paper=09%282005%29084
http://xxx.lanl.gov/abs/hep-th/0505029
http://jhep.sissa.it/stdsearch?paper=01%282006%29011
http://xxx.lanl.gov/abs/hep-th/0505040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C061902
http://xxx.lanl.gov/abs/hep-th/0505055


J
H
E
P
0
3
(
2
0
0
6
)
0
5
5

[28] I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M)

gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159].

[29] K. Altmann, The versal deformation of an isolated toric Gorenstein singularity,

alg-geom/9403004.

[30] B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric

duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085].

[31] C.P. Herzog, Exceptional collections and del Pezzo gauge theories, JHEP 04 (2004) 069

[hep-th/0310262].

[32] M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7

(2004) 1117 [hep-th/0212021].

[33] S. Franco, A. Hanany and A.M. Uranga, Multi-flux warped throats and cascading gauge

theories, JHEP 09 (2005) 028 [hep-th/0502113].

[34] K. Konishi, Anomalous supersymmetry transformation of some composite operators in

SQCD, Phys. Lett. B 135 (1984) 439.

[35] F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in

supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB578%2C123
http://xxx.lanl.gov/abs/hep-th/0002159
http://xxx.lanl.gov/abs/alg-geom/9403004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB595%2C165
http://xxx.lanl.gov/abs/hep-th/0003085
http://jhep.sissa.it/stdsearch?paper=04%282004%29069
http://xxx.lanl.gov/abs/hep-th/0310262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C7%2C1117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C7%2C1117
http://xxx.lanl.gov/abs/hep-th/0212021
http://jhep.sissa.it/stdsearch?paper=09%282005%29028
http://xxx.lanl.gov/abs/hep-th/0502113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB135%2C439
http://jhep.sissa.it/stdsearch?paper=12%282002%29071
http://xxx.lanl.gov/abs/hep-th/0211170

